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S T O C H A S T I C  F L U T T E R  OF  A R O W  OF P L A T E S  

IN A T U R B U L E N T  B O U N D A R Y  L A Y E R  

OF I N C O M P R E S S I B L E  F L O W  

V. P. Reutov and G. V. Rybushkina  UDC 537.86.187; 530.182; 533.6.013.42 

The nonlinear dynamics of a long row of rectangular plates in a turbulent boundary layer of 
incompressible fluid is studied in the present paper. The row is aligned with the flow, and the plate edges are 
immediately adjacent to each other and are not mechanically connected. The analysis is based on the results 
of [1-3], where the response of the mean flow in a turbulent boundary layer to the flexure of an individual 
plate and a pair of adjacent plates was determined. 

The equations of motion of the row are derived under the same assumptions that were used in [3] to 
study nonlinear flutter of a pair of adjacent plates (the deflection nonlinearity at a "linear" flow response 
is taken into account). The case of high-density fluid flow around the row (the apparent additional mass is 
comparable with the mass of the plates or exceeds it) is considered, which allows us to restrict ourselves to a 
one-mode plate flexure approximation. 

Dowell [4] studied the occurrence of random self-oscillatory regime for supersonic flow around an 
individual panel. Vol'mir [5] considered periodic self-excited oscillations of a row of plates in supersonic 
potential flow. No self-excited oscillations arise in strictly potential incompressible (essentially subsonic) flow 
around the plates [3]. However, these oscillations can occur due to irreversible energy transfer to the plates from 
the mean flow under the boundary layer that always appears near the exposed surface under real conditions. 
The case of a turbulent boundary layer is of considerable practical interest. Reutov [3] showed that such a 
generation mechanism can cause the transition from periodic to chaotic self-excited oscillations (a stochastic 
flutter) in a system of two adjacent plates. The goal of this paper is to study the features of the onset of 
dynamic chaos in a long row of plates simulating a large panel surface. 

1. A p p r o x i m a t i o n  o f  C l o s e - R a n g e  I n t e r a c t i o n  of  P l a t e s  in a L o n g  Row.  Let us consider a 
row of identical rectangular plates located at the same level with a rigid surface y = 0. The plate dimensions 
along and across the row are denoted as L1 and L2, respectively. The adjacent edges of the plates are fixed 
with a hinge. The plates are assumed to have a high transverse rigidity, and only their buckling along the 
row is possible. On the side y > 0 the row is exposed to a turbulent boundary layer of incompressible flow in 
the longitudinal x direction, and, in the half-space y < 0, there is an immobile medium with negligibly small 
density. The boundary-layer thickness 6 is constant along the entire row. 

We shall confine ourselves to the study of row oscillations in a close-range approximation in which only 
the relation between adjacent plates in the flow is taken into account. To solve this problem, one can use the 
equations of one-mode oscillations of a pair of adjacent plates adopted in [3]. Preserving the dimensionless 
variables adopted in [3], we write the equations of row motion in Lagrangian form (see, for instance, [6]): 

d-t OA-----kk - Qk- (1.1) 

Here Ak is the amplitude of the first Galerkin mode of the kth plate flexure (normalized to the plate thickness 
h), L is the Lagrangian of the system, and Qk are the generalized nonconservative forces. The Lagrangian of a 

Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod 603600. Translated from 
Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 37, No. 5, pp. 52-62, September-October, 1996. Original 
article submitted March 21, 19951; revision submitted July 27, 1995. 

658 0021-8944/96/3705-0658 $15.00 (~) 1997 Plenum Publishing Corporation 



row with a close-range interaction of plates has the form (summation is performed over the all plate numbers) 

[~ "2 c = MoA, + M 2b/ j-  + M2AsAj-2 - B (Aj ii-  - A,  Aj_ ) 
3 

1 DoA~ + D, A jA j_ ,  -~aeA (1.2) - , 

where the coefficients M0, Ml, Bl, D0, and Dl are expressed in terms of the parameters defined in [3]: 
Mo = m o  =- a + alao, Ml = a la l ,  Bl = alVb~, Do = ds =- otld0V 2 - 1, D1 = alV2dl; and ee > 0. Thus, 
a = 7/('~ + 3'0), where 3' and "to are the plate mass per unit area and the reference additional mass of the 
fluid, respectively, and al  = 1 - a. Then the heavy flow (3'/'y0 < 1) around the row is considered, and all 
computations, as in [3], are performed for a = 0.2. The dimensionless flow velocity is V = uooko/wo, where 
Uoo is the free-stream velocity outside the boundary layer, k0 = 7r/Ll is the flexural wavenumber, and w0 is 
the characteristic frequency of plate oscillations with allowance for the apparent additional mass of the fluid 
[the time in (1.1) and (1.2) is also normalized to w0)]. The coefficients a0, al, bl, do, and dl which are weakly 
dependent on the Reynolds number are calculated in [2, 3] 1 for k06 = I. The theory was developed for a 
quasi-two-dimensional flexure of the plates (L2 >> L1), and numerical values were found for L2/LI = 3. 

The nonconservative forces Qk take into account the plate-material losses and the frequency-dependent 
energy transfer between the oscillating surface and the mean boundary-layer flow: 

Qk = --2~/tk -- a13(V2~k + Vgo~tk) + a131V2rlk_l, (1.3) 

~k + aoV~k + V 2 c2~k = qoVAk - soV 2 Ak, ijk + al Vilk + V2c~rlk = ql V ftk - s, V2Ak. 

The values of the coefficients go,/3,/31, a0,1, c0,1, and q0,1 are given in [3], and ~k and r/k are auxiliary variables 
that describe the contribution to Qk of the plate numbered k and the upstream plate adjacent to it. The 
normalized loss coefficient ~ can be expressed in terms of the quality factor QI of the natural oscillations of 
the plate in vacuum [1]: f = (1/2QI)v/'~. Note that the nonconservative forces make a little contribution to 
(1.1) since fl,/31, and ~ << 1. The coefficient M0 in (1.2) characterizes the mass of each plate with the additional 
mass of the fluid, and M1 describes the interaction of neighboring plates via acceleration of their surfaces 
(mutual-additional-mass type effects). The coefficient M2 taking into account the coupling via acceleration 
between plates with numbers that differ by two will be defined below. Let us note that the coefficient BI 
characterizes the "inertial-drift" coupling between the plates (which is due to the motion of their surfaces 
and the presence of flow over it), and the coefficients Do and D1 are responsible for the intrinsic and mutual 
elasticity of the plates in the flow. In the absence of Qk, Lagrangian (1.2) describes the "quasipotential" flow 
around the plates [1-3]. 

System (1.1)-(1.3) is readily generalized for a row of plates located on a distributed springy base with 
elasticity coefficient KE per unit area. (An elastic surface model with a springy base is considered in [7].) For 
t h i s ,  one should define w0 a n d  ~e as  w0 = [(Dk 4 - Nk~ + KE)/3"o] '/2 and ae = 1/(1 - N/k2D + KE/k4D)  (see 
the notation in [3]). In addition, the same system will describe a symmetric two-side flow around a row of 
plates if we make the formal substitution al  --* 2al in (1.1)-(1.3) preserving the definitions of a and al .  

2. T rans i t i on  to  t h e  H a m i l t o n i a n  Desc r ip t ion  and  S u b s t a n t i a t i o n  of  A p p r o x i m a t i o n  of  
C l o s e - R a n g e  I n t e r a c t i o n .  As is seen from (1.1)-(1.3), when the plates are coupled via acceleration 
(M1,2 r 0), the second derivatives fi'k are not expressed explicitly in terms of/~k and Ak, and this makes 
it impossible to write the system as the first-order equations. Explicit expressions for/]k are found by solving 
a linear system of algebraic equations whose order equals the number of plates in the row and contain velocities 
.ilk and flexures Ak of all plates. It is clear, however, that with decreasing contributions of higher coupling 
via acceleration, there is no need to take into account the effect of flexure of all plates on Ak. A sequential 
realization of approximation of the close-range interaction for coupling via acceleration is possible if we pass 
to the Hamiltonian description of row motion. 

lThe coefficients bl and dl are misprinted in [3]. Their true values are bl -= -0.43 and dl = -0.10. 
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Let us introduce the Hamiltonian H and generalized momenta Pk using the known formulas [6] 

OL It  = ~ A ,  --.-OL _ L, pk - . (2.1) 
j OAj OAk 

Here the subscripts j and k run through the numbers of all plates. The substitution of (1.2) into the second 
relation of (2.1) yields 

1 
Pk = M0/i'k + Ml(,4k+a + i lk- t )  + m2(l~k+2 + Ak-2) -- ~ Bl(Ak+l - Ak - l ) .  (2.2) 

We shall seek an explicit expression for the flexural velocities /i k in terms of Pk in the form of a series of 
perturbation theory in coupling between the plates. Restricting the discussion to zeroth- and first-order terms, 
we have 

A~ = ~ pk - ~-~0 (pk+~ + p~-~) - ~--~0 (vk+2 + pk-2 )+  g B~(Ak+~ - a k _ ~ ) .  (2.3) 

Substituting (2.3) into (1.2) and (2.1) and ignoring second-order terms with respect to coupling, we obtain a 
Hamiltonian for the row in the approximation of close-range interaction: 

1 2 M1 M2 

1 

3 4 B1 1 DoA~ - DIAj - IAj  + -~ mail .  (2.4) + ~ o  (Pj-IAj - pjAj-1) - ~ 

The canonical equations generated by Hamiltonian (2.4) include system (2.3) and momentum equations 

B1 
[o~, = DoAk + Dl(Ak+x + Ak-1)  + - ~ 0  (Pk+l -- Pk-1) -- 3mA~ + Qk. (2.5) 

The full system of equations for row motion (2.3), (2.5), and (1.3) is convenient,for computer solution, since 
it is easily reduced to a system of first-order equations. For a row of finite length one should equate to zero 
the variables Ak and pl, with subscript values beyond the scope of plate numbers. 

Let us consider the stability of the zeroth stationary flexure of an infinite row against wave perturbations 
of the form 

1 AeinO_iw t A, = ~ + complex conjugate, (2.6) 

where A is the complex amplitude of the wave; w is its frequency, and 0 is the phase shift per one coupling 
(the wavenumher of a running wave). For a conservative model (Qk ~ 0) we obtain a dispersion equation 
from the linearized system (2.3) and (2.5): 

( BI )~ 
M W+M00 sin0 + D ~ = 0 ,  (2.7) 

where M = M2/(Mo - 2M1 cos0 - 2M2 cos 20) and Ds = Do + 2D1 cos0. Its solutions have the form 

B1 s i n 0 +  - ~  (2.8) 
aq,2 = - M'--o M" 

Taking into account the dependence of Ds and M on V, it is easy to show that for V > V~ = 
1/~aldo +2cqd l  cos0 the roots are complex-conjugate ("reactive" instability of the flexure arises). The 
quasi-static instability (divergence) of disturbances with a counter-phase flexure of adjacent plates 0 = ~r has 
minimum critical velocity V~. For the numerical values of the coefficients given in [3] Vc ~- 1.38. 

To clarify the role of distant coupling between the plates, we studied row oscillations in uniform 
potential flow. We confine ourselves to a brief description of the results of this analysis. In a comparatively 
simple potential flow model, it is possible to derive a full system of equations of motion of the row taking into 
account both an infinite set of Galerkin flexural modes and the entire set of relations between the modes on 
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different plates. Restricting ourselves to a finite number of modes, we easily obtain a dispersion equation for 
small oscillations (2.6) as a polynomial in w (whose power is cqual to the doubled number of modes). The 
coefficients of this equation are infinite sums over the length of coupling j between the plates (j = 0, 1, 2 ...). 
The dependence of the components of these sums on j is found explicitly, and this enables one to solve tile 
quesLion about their convergence. 

In the one-mode plate flexure model, summation over "inertial-drift" and elastic higher-order couplings 
yields a finite result for any 0, couplings with numbers j >/2 making a minor contribution to the sums. At the 
same time, summation of contributions of distant couplings via acceleration leads to a logarithmic singularity 
for '9 = 0, which corresponds to an infinite additional mass (calculated for one plate) for synchronous 
oscillations of all plates of an infinite row. This divergence of additional mass is similar to that discussed 
in [2] for a two-dimensional flexure of a single infinite plate. 

The calculations showed that an increase in the number of summed couplings via acceleration leads to a 
sharp increase in the sum within a comparatively narrow range of values of [01 near '9 = 0. Outside this region, 
only the close-range interaction between the plates can be taken into account with an acceptable accuracy. 
Analyzing the expression for M in (2.7), one can easily see that the effect of increasing additional mass for 
flexures with '9 ~ 0 can be taken into account phenomenologically within the framework of approximate 
system (2.3) and (2.5). Precisely for this purpose the coupling via acceleration was derived in (1.1) for plates 
whose numbers differ by two (the term ",,M2). The effect of a sharp increase in additional mass for small '9 
(with a comparatively small variation of M in the main region of values of '9) is achieved if M2 is chosen from 
the condition M[o=0 >> M0. This correction is necessary if substantial synchronous plate flexures arise in the 
approximation of the close-range interaction for some reasons. Since the growth of additional mass for '9 ~ 0 
leads to suppression of synchronous plate oscillations, it is natural to assume that the dynamics of the row 
depends more greatly on the fact of suppression itself than on the way of its realization. In the calculations 
below the coefficient M2 is determined from the condition M0 - 2M1 - 2M2 = 0.2M0. 

Within the framework of the full system of equations we also considered two-mode plate oscillations 
with a variable-sign periodic flexure in an infinite row (,9 = 7r). Calculations of heavy fluid flow showed that 
for V ~< 1.5Vc allowance for the second mode has a minor effect on the behavior of the roots of (2.8). Only 
with a further increase in V is the deviation from (2.8) observed, and the frequency of natural oscillations due 
to the second mode decreases. The correctness of approximation of the close-range interaction for a dissipative 
coupling was supported in [2, formulas (5.3) and (5.4)]. 

Thus, the approximation of close-range interaction for one-mode oscillations of an infinite row of plates 
supplemented by the phenomenological consideration of the effect of increasing additional mass in synchronous 
flexure of the plates can be used to describe an actual row at flow velocities that are not too high compared 
with the critical divergence velocity. 

3. T h e  G i n z b u r g - L a n d a u  E q u a t i o n  for Wave D i s t u r b a n c e s  N e a r  t h e  Stabi l i ty  Th re sho ld .  
The allowance in (2.5) for non-conservative forces of the flow response to the row flexure leads to resistive 
instability which was studied in [1] for a variable-sign flexure ('9 = 7r). It is subcritical with respect to 
divergence, since it has a critical velocity V c' < Vc. 

To investigate this instability for an arbitrary '9, let us define the dissipative portion of the flow response 
to the surface flexure (2.6) as Y(w,'9) = Q/A [Q is the complex amplitude of the harmonic exp (inO - iwt) of 
the Q, distribution]. Using (1.3), one can write an expression for Y as 

where ~ and qol are the rational functions defined by relations (1.3) and (1.5) from [3]. 
The dispersion equation for the linear problem is obtained from (2.8) after the formal substitution 

Ds --+ Ds + Y(w,'9). Solving it by the method of perturbations with respect to small Y, we obtain the 
resistive instability increment in the subcritical region (V < Vc): 

Im Y ~=n(o)" 
F = Im~v = 2M(w + (B,/Mo)sin'9) (3.2) 
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Here, Q(0) = Retol > 0 is the wave frequency in the conservative system [see (2.8)]. The critical velocity 
of resistive instability V~ depends on ~. For the value ~ = 0.004 which is used in all further calculations, 
instability arises for V~ = 0.73, Oc ~ -0.367r, and wc -~ 0.60. 

Figure 1 shows the dispersion characteristics of the row (a) and the resistive instability increment (b) 
constructed using (3.1) and (3.2) (curves 1 and 2 correspond to V = 0.77 and 0.8). Note that instability 
first arises for 0 -r +Tr, and the phase velocity of disturbances at the threshold of stability loss is directed 
upstream. At first glance, the latter fact contradicts the well-known results of the theory of wave stability 
on elastic coatings when streamwise disturbances increase [7]. It should be taken into account, however, that 
disturbance (2.6) corresponds to a wide three-dimensional spectrum of the surface flexure with respect to the 
z coordinate including both "forward" and "backward" waves. Because of the fairly large relative elasticity 
for adjacent plates (see [3]), the direction of the energy exchange with the flow depends not only on their 
oscillation frequency ~o but also on the phase shift 0. The wave dispersion in a conservative system in this 
case induces a phase ratio of the flexures such that the instability threshold is exceeded for the first time for 
the upstream waves. 

If the critical velocity V~ is slightly exceeded, a narrow wave spectrum for O is excited (curve 1 in 
Fig. 1). In this case, one can derive the Ginzburg-Landau equation for weakly nonlinear modulated waves, 
which is now one of the basic models used to study the dynamic chaos [8, 9]. 

The dispersion equation for weakly nonlinear waves is obtained from (2.7) after substituting Ds 
Ds -(9/4)a~iA[ 2, Accordingly, with accuracy up to the second-order amplitude corrections, the wave frequency 
takes the form 

( . + (Bl/Mo)9ae s i n ~ ) )  (3.3) -- fi(lAI2'~) = ~(~) + PIA[2 P = 8 ( a  " 

When calculating the increment F in (3.2) one should use the frequency with nonlinear correction (3.3). 
Considering the expression for F as a function of w before substituting w = fi into it, let us use its passage 
through zero for w = w.(0). [For w = w. the loss is compensated by the energy supply from the flow. 
Obviously, r = w, (0c).] Using a linear approximation of this function, we can write F ~ #[w -w.(O)] ,  where 

= OF/O~L,=~ * < 0. As a result we obtain an expression for the complex frequency of nonlinear waves #(0) 

with accuracy up to second-order amplitude corrections: 

(~ = ~(0) + p(O)iA[ 2 + iF(0) + i#(O)p(O)iA] 2. (3.4) 

The main part of the solution of a weakly nonlinear problem can be presented in the form of (2.6) where 
0 = 00 and ~ = w0 are the wave parameter values at the maximum of the increment F(0) (which are, generally 
speaking, different from 0c and we), and the complex amplitude A is a slowly changing function of n and t. 

Multiplying (3.4) by A(n, t) exp (inO - iwt) and applying the standard procedure of Fourier transform 
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for narrow wave packets [10], we obtain a one-dimensional Ginzburg-Landau equation in the form 

OA 1 02A  
0--t- + 2 (rg - iflg) ~ = e A  - (i + lUol)polal2a,  (3.5) 

where e = F(,)0) is the supercriticality of the flow-row system; Fg < 0, flg, #0, and p0 are the values of 
02F/Ot92, OZfl/O02, #,  and p for 0 = 00. Equation (3.5) is written in the frame of reference moving with the 
wave group velocity (the substi tution tnew = t, nnew = n - (Ogt/O,9o)t is performed after which the subscript 
"new" is omitted).  

A characteristic feature of the Ginzburg-Landau equation (3.5) is its "quasi-conservative" structure, 
which is manifested in small values of dissipative terms: 1#01 << 1 and IF}{[ << [flg[. This small dissipative 
nonlinearity, however, plays a principal role, since it limits the instability arising at e > 0. The small term 
,-, Fg should also be preserved in (3.5), since it limits the spectral width of the instability region for 0 (curve 1 
in Fig. lb near ,9 = 00 m 0.57r). 

Equation (3.5) has a solution in the form of a steady-state wave 

a = ~ e x p  ( - i ~ t / l u o l ) .  

The well-known criterion of the occurrence of modulation instability for the normalized Ginzburg-Landau 
equation [9] written in terms of the coefficients of (3.5) takes the form fig < -IFg 0 I- This instability has no 
threshold of supercriticality. In addition, since the dissipative terms are small, the above condition is in fact 
coincident with the Lighthill condition of the occurrence of modulation instability in the conservative problem 
in [10], which, for (3.5), takes the form fig < 0. As is seen from Fig. 1, this condition is satisfied for weakly 
supercriticM waves. Thus,  small dissipation determines the generation level, and the modulation instability 
remains the same as in a conservative system. It was shown in some papers (see, for example, [11-13]) that 
the one-dimensional Ginzburg-Landau equation describes various regimes of dynamic chaos. 

4. R e s u l t s  of  N u m e r i c a l  I n v e s t i g a t i o n  of R a n d o m  Se l f -Exc i t ed  Osci l la t ions .  System (2.3), 
(2.5), and (1.3) was solved numerically for a row of 11 plates. The numerical scheme included the fourth-order 
Runge-Kut ta  technique and the variable step algorithm with accuracy control. Arbitrary initial distributions 
of small flexures Ak and zero values of pk, ~k, 0k, ~k, and r)k were set. In Eqs. (2.5) it was assumed that  ee = 1, 
which did not restrict the generality of consideration [3]. Time averaging, which is denoted below by angle 
brackets, was performed by summation of the values of the averaged quantity at equidistant t ime moments 
and subsequent division of the result by the number of points. The standard ampli tude of the plates flexure 
was determined by the formula A,~ = ~/((Z,  - (Z,))2). 

No self-excited oscillations appear with rather large losses in the plates ~. Ignoring the contribution to 
Qk due to the energy exchange with the boundary layer (/3,/31 ~ 0), we obtain the following relation 

d H  
- 2 ~ E A  ff <~0. (4.1) 

dt 
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It follows from (4.1) that the system tends to an equilibrium state that coincides with one of the local 
minima of the Hamiltonian H. Steady flexures different from zero arise for V > Vc. In particular, the steady 
state of an infinite row is easily found from (2.3) and (2.5) in the form of a variable-sign flexure: A,~ = 

( - 1 ) n ~ / ( D 0 -  2D1)/3ae. Numerical solution of the equations showed that a row with large losses in the 
plates demonstrates the multistability property (the multiplicity of asymptotic states) typical of dissipative 
distributed systems [8, 9]. Each of these states is a sequence of segments with a variable-sign flexure. At 
sites of contact of the segments the flexure of adjacent plates is identical, and this can be regarded as the 
appearance of defects in a periodic "grid." The appearance of defects can be attributed to the arbitrariness 
in selecting the reference point ("phase") in a solution with a variable-sign flexure. 

The self-excited oscillations in a row with small losses were studied using the numerical integration of 
Eqs. (2.3), (2.5), and (1.3) for ~ = 0.004. The main results are presented in Figs. 2-5. Curve 1 in Fig. 2 is the 
standard amplitude of the oscillations of the central plate flexure ,3,6 versus the flow velocity V, the regions 
with qualitatively different oscillatory regimes being numbered I-III. It is widely known that one of the basic 
criteria of existence of a random attractor in the phase space of a system is the presence of positive Liapunov 
factors [10, 14]. The largest of them, Am, determines the "divergence" velocity of phase trajectories on this 
attractor. Curve 2 in Fig. 2 shows the behavior of the main Liapunov factor ,~,n- 

Figure 3 shows the fi-n distribution along the row for various flow velocities (curves 1-4 correspond to 
V = 0.8, 1.1, 1.5, and 2.0). The space and time spectra of the flexure rate ,4k are presented in Figs. 4 and 5 [the 
solid curves in Fig. 4 correspond to V = 0.8, and the dashed curves to V = 1.1; Fig. 5 illustrates the spectra 
for V = 1.5 (solid curves) and Y = 2 (dashed curves)]. The space power spectrum S(~) was calculated using 
the formula S = (I,4o[)/nt, where nt is the number of couplings in the row and A,~ is the Fourier transform 
for the discrete function An. The time power spectra I(w) were calculated for the central plate using the 
procedure described in [3]. Figure 6 shows the space correlation coefficient of the flexure oscillations with 
respect to the central plate K = ((A6 - (A6))(A, - (A,) ) ) /A6A, .  

As is seen from Fig. 3, the intensity distribution of oscillations along the row is nearly uniform 
practically for each flow velocity. This indicates a minor role of the wave transfer of power along the row. 
Therefore, it seems quite natural that the critical velocity of excitation of oscillations (see Fig. 2) is close to 
the value V e' found in Section 3 for a single wave in an infinite row. A regime with a periodic time modulation 
of oscillations is observed in a very narrow region I in Fig. 2. The carrier frequency of the oscillations fits 
approximately the linear theory maximum increment (Fig. lb). This picture is in good agreement with that 
predicted in Section 3 on the basis of the Ginzburg-Landau equation. 

The oscillations generated in region II in Fig. 2 have several typical peaks in space and time spectra. 
Since the row is not too long, the discrete peaks of the space spectrum are considerably smeared (by the 
value A0 ~ 27r/nt = 0.2). The transition to the chaotic regime takes place in region II near its boundary 
with region I. The main Liapunov factor Am is very small here, and the place where it changes sign cannot be 
established accurately because of the calculation uncertainty. The existence of random self-induced oscillations 
in the major part of region II is supported by the positive Am (see Fig. 2). 

As is seen from Fig. 4a, there are peaks with the wavenumbers 01/~r = 0.68, 02/7r = 0.47, and 
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03/ r  = 0.9, and also 01/~ " = 0.2 in the space spectrum for V = 0.8. The frequency spectrum peaks have the 
frequencies w] = 0,60, w2 = 0.54, and w3 = 0.66. Using the dispersion curve 2 in Fig. la, one can easily see 
that the pairs of values (wt, 0[), (w2, O2), and (wa, 03) correspond approximately to the upstream waves of 
the linear problem. The peak 0'/~r = 0.2 can be explained by the presence of reflected waves in the row that 
have close frequencies wl,2,3 (see the dispersion branch 2 at d > 0). The wave (wl, 01) is at the increment 
maximum of the linear problem (Fig. lb). The occurrence of waves (w2, 02) and (w3, 03) can be explained 
by the fact that a four-wave resonance interaction arises in the row: 2w] ~ w2 + w3 and 201 ~ 02 + 03. 
This process can be regarded as the result of transformation of the modulation instability described by the 
Ginzburg-Landau equation since the waves-satellites move away from the fundamental wave with an increase 
in V due to the rapid expansion of the instability region for 0. 

The ratio of intensities of the generated waves is strongly affected by their nonresonance (energetic) 
interaction. The conservative cubic nonlinearity leads to a nonlinear shift of the wave frequency, owing to 
which the dependence of the increment on frequency is transformed into its dependence on amplitude. To 
illustrate this property, let us find the increment of a weak perturbation with wavenumber Oa and frequency 
wa = ~ ( 0 , )  in the presence of a strong disturbance with wavenumber 0 r 0a and amplitude A. The dispersion 
equation for such a "sample" disturbance is obtained by substituting Ds ---+ D, - (9/2)aeIA[ 2, 0 ~ 0(~ in (2.8). 
Curves 3 and 4 in Fig. 1 show the behavior of the test wave increment for .2,6 = [A[/v/'2 = 0.1 and 0.15. It 
follows from the presented dependence, in particular, that an intense disturbance (w2, 02) shifts the increment 
maximum toward smaller values of [0[ to at tenuate the growth of the wave (w], 01), which is at the increment 
maximum of the linear problem. Thus, one can assume that dynamic chaos in region II results from resonance 
and energetic interaction of several quasi-harmonic waves. 

A "developed" chaos regime characterized by continuous space and time spectra (see Fig. 5) is observed 
in region II[ in Fig. 2. The space spectra in region III have no explicit peaks, and their maximum is at 
~r-oscillations. The concentration of the energy of space harmonics at r-oscillations is associated with the 
growing tendency of adjacent plates to counter-phase flexure at high velocities, which is due to the potential 
flow streamlines curvature [3]. The counter-phase character of flexure and rapid loss of correlation of random 
oscillations along the row are illustrated by the space correlation function shown in Fig. 6. 

The boundary between regions [[ and [I[ is rather conventional and corresponds approximately to 
the critical divergence velocity Vc (see Section 1). The development of strong stochasticity in region III 
characterized by high values of Am can be explained by the occurrence of separatrix contours in the phase 
portrait of individual oscillators plates. The chaos results from the "phase mixing" under the action of 
conservative couplings between the plates just as it takes place in the case of two hinged plates [3]. The 
frequency spectra in Fig. 5 are also similar to those obtained in [3]. 

Calculations show that the additional-mass correction for small I0[ discussed in Section 2 affects the 
oscillation parameters only in regions I and II in which, in the absence of correction, peaks can occur in the 
space spectrum for small IOI. This is not significant for a "developed" chaos, since the spectrum is shifted 
toward 7r-oscillations even under the action of close couplings. 
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Thus, a model of close interaction of plates in a long row exposed to a turbulent boundary layer is 
suggested in the present paper. Random reg;mes of self-induced oscillations of a long row are studied on the 
basis of this model. All the calculations are performed for "heavy" incompressible flow around a row of plates. 
It is shown that the features of self-induced oscillations ill the "subcritical" region (with respcct to the flexure 
divergcnce) can be explained in terms of waves. A principal difference of self-induced oscillations in a long row 
from those in a system of two hinged plates is that stochasticity appears in a long row nearly immediately 
after tile occurrence of instability. In addition, the higher values of the main Liapunov factor and a more rapid 
loss of "memory" of the random motion about the external effects are typical of a long row. 
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